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Abstract

Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic
properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless
of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance
of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech
heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center
oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike
frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional
leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of
three maximal conductances (leak current, �ggLeak; a persistent K current, �ggK2; and of a persistent Na+ current, �ggP) that
correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a
reduced space suggested that there might be non-linear relationships between these parameters for these instances.
Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations
in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of �ggLeak, �ggK2, and �ggP,
and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when
varied individually bursting activity was not maintained.
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Introduction

Vital adaptive rhythmic behaviors such as breathing and

heartbeat in invertebrates are produced by central pattern-

generating networks (CPGs). Beside their inherent importance in

pacing rhythmic movements, CPGs represent fertile test beds for

understanding neuronal network dynamics because of the

robustness of their activity patterns even in reduced experimental

preparations [1,2,3]. The combination of the intrinsic electrical

properties of the component neurons and their synaptic interac-

tions within a CPG produces their rhythmic activity [1]. To

maintain functional rhythmic activity, the CPG neurons and

networks must be remarkably robust regardless of changing

internal and external conditions. Recent experimental evidence

suggests that animals show robust responses to modulation and

environmental perturbations (e.g., large temperature changes

[4,5,6]). Modeling studies have begun to address the mechanisms

underlying the robustness in activity type. For example, Goldman

et al. [7] tested a model neuron over a wide range of parameters

and found that activity type was robust to certain changes in

parameters but very sensitive to other changes.

Bursting activity in CPGs [1,8,9,10] is characterized by intervals

of repetitive spiking separated by intervals of quiescence.

Autonomously bursting neurons are common components of

CPGs [3]. Half-center oscillators (HCOs), which consist of

reciprocally inhibitory neurons (often autonomous bursters), are

one of the most prevalent circuit building blocks of CPGs that are

thought to assure robust alternating bursting [3,10]. Studies of

HCOs show that they can display a wide range of bursting activity

when the parameters controlling intrinsic membrane properties

and synaptic interactions of the neurons are varied [1,8,11,12,13].

The analysis of this basic circuit building block has helped

researchers understand how bursting activity is generated and how

motor patterns are controlled by the nervous system. One CPG

that is particularly well understood controls heartbeat in leeches

[2]. The heartbeat period is regulated by a variety of environ-

mental (e.g. changes in temperature) and physiologic (brought on

by locomotor movements like swimming) inputs. When temper-

ature increases [14], the burst period of the heartbeat CPG

decreases [15]. Similarly, when the animals swim, the swim CPG

is active and the heartbeat CPG burst period decreases [14].

Therefore period is an important regulated characteristic of this

CPG.

Recent experimental and modeling analyses of bursting activity

indicate that the parameters (specifically the maximal conduc-

tances of specific ion channels) influencing bursting activity show

3–5 fold variation from animal to animal or model instance to

model instance but that there are relationships (linear or non-

linear) between parameters [16]. For example, electrophysiolog-

ical and molecular studies in stomatogastric neurons [17,18,19]
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found pairwise and four-way linear correlations between the

parameters. These studies suggest that the functional activity of a

given neuron may reside in the set of parameter correlation rules

it maintains rather than in the value of any particular parameter.

In addition, such correlations were also found in model solution

spaces obtained by parameter space exploration of biologically

realistic models [20,21,22]. Many studies, both experimental

[23,24] and computational [11], have provided evidence that

linearly correlated sets of parameters (intrinsic and synaptic

properties of neurons) allow CPG neurons to produce and

maintain their rhythmic activity. To establish parameters

relationships, some studies have used new visualizations (e.g.,

NDVis, parameterscape) [25,26,9], while others have used

mathematical methods (e.g., regression, discriminant analysis)

[27,28]. However, it is still unclear, how multiple parameters

interact to produce and maintain the rhythmic single cell and

network activity. Our study here focuses on how intrinsic

membrane and synaptic parameters interact to maintain func-

tional bursting activity in HCO and in burster model neurons

from the leech heartbeat CPG.

For our study, we used the HCO computational model of Hill

et al. [29], which was successfully developed to replicate the

electrical activity (rhythmic alternating bursting of mutually

inhibitory neurons) of the oscillator (HN) interneurons of the

leech heartbeat CPG under a variety of experimental conditions.

This HCO model consists of a two reciprocally inhibitory model

HN interneurons, represented as single isopotential electrical

compartments with Hodgkin and Huxley [30] type intrinsic and

synaptic membrane conductances. Each compartment contains 8

voltage-dependent currents, five inward currents INa - a fast Na+

current, IP - a persistent Na+ current, ICaF - a rapidly inactivating

low-threshold Ca current, ICaS - a slowly inactivating low-

threshold Ca current, Ih - a hyperpolarization-activated cation

current) and three outward currents (IK1 - a delayed rectifier-like

K current, IK2 - a persistent K current, IKA - a fast transient K

current). The model has two types of inhibitory synaptic

transmission between the two interneurons: graded transmission

(ISynG) and spike-mediated transmission (ISynS). The maximal

conductances (�gg) of each of the membrane and synaptic currents

and the leak reversal potential (ELeak) are free parameters in the

model.

A comprehensive analysis of parameter relationships in the

complete, canonical HCO neuron model presents a computa-

tional and theoretic challenge. To systematically explore the

parameter space of the HCO and corresponding burster models,

in our previous work [31], we simulated about 10.5 million

model instances, whose characteristics we recorded into a

database named HCO-db [31,32]. The simulations were

obtained by co-varying a carefully selected set of parameters

that single parameter variation analyses showed were crucial in

establishing bursting and controlling burst period [29]. These

parameters comprise the maximal conductances �ggSynS, �ggSynG, �ggP,
�ggK2, �ggh, �ggCaS and �ggLeak (varied across of 0%, 25%, 50%, 75%,

100%, 125%, 150%, and 175% of their canonical values), and

ELeak (varied across 270, 265, 260, 255, and 250 mV values)

in all possible combinations. All simulated instances were

classified into separate groups showing the same electrical

activity. Our HCO-db is a very efficient tool for querying the

simulated HCO model instances for finding potential parameter

relationships.

In this study, we focused only on the four groups of instances

from our HCO-db database showing functional leech bursting

characteristics, HCOs, realistic HCOs, bursters, and realistic

bursters. A HCO instance has two model interneurons each

showing bursting activity with at least two bursts in a 40 s time

interval, and has the following characteristics: each of its bursts

has normal spikes (See Definitions), a small variation of period,

a relative phase in the range of (0.45–0.55), and at least one

synaptic component present (either �ggSynS?0, or �ggSynG?0, or

both �ggSynS?0 and �ggSynG?0). A realistic HCO instance is a

HCO that showed realistic bursting corresponding to that

observed in leech oscillator heart interneurons (period between

5–15 s, average spike frequency between 8–25 Hz, and duty

cycle between 50–70%). An isolated neuron instance (isolated

neuron) has two identical interneurons (though started with

different initial conditions, but otherwise identical), and no

synaptic interaction (i.e., �ggSynS = 0 and �ggSynG = 0). A burster

instance is an isolated neuron instance for which both neurons

had at least two bursts, each with normal spikes, and regular

periods (as defined above for the HCOs). Note that burster

instances can be thought of as being HCOs with no synaptic

connections. A realistic burster instance is a burster instance

that showed realistic bursting corresponding to isolated leech

oscillator heart interneurons (period between 5–15 s, and

average spike frequency between 8–25 Hz). Notice that

realistic instances are a subgroup of either HCOs or bursters,

and in our discussion here, unless specifically indicated, the

HCO and burster groups include their subgroup of realistic

instances.

We applied Principal Component Analysis (PCA) to automat-

ically find the potential existing linear correlations between the

parameters maintaining functional activity. The results returned

by PCA identified three maximal conductances (�ggP, �ggK2, and �ggLeak)

that correlate linearly for the bursters and the realistic bursters,

and showed that for the HCOs and realistic HCOs there were no

linear correlations between the parameters, but visualizations in a

reduced space suggested that non-linear relationships between

parameters might exists for these instances. In addition, we found

that the bursting activity of the burster instances was very sensitive

to variations in �ggP, and �ggLeak and to a lesser extent �ggK2.

Author Summary

Central pattern-generating networks (CPGs) must be
remarkably robust, maintaining functional rhythmic activ-
ity despite fluctuations in internal and external conditions.
Recent experimental evidence suggests that this robust-
ness is achieved by the coordinated regulation of many
membrane and synaptic current parameters. Experimental
and computational studies showed that linearly correlated
sets of such parameters allow CPG neurons to produce and
maintain their rhythmic activity. However, the mechanisms
that allow multiple parameters to interact, thereby
producing and maintaining rhythmic single cell and
network activity, are not clear. Here, we use a half-center
oscillator (HCO) model that replicates the electrical activity
(rhythmic alternating bursting of mutually inhibitory
interneurons) of the leech heartbeat CPG to investigate
potential relationships between parameters that maintain
functional bursting activity in the HCOs and the isolated
component neurons (bursters). We found a linearly
correlated set of three maximal conductances that
maintains functional bursting activity similar to the animal
in burster model instances, therefore increasing robustness
of bursting activity. In addition, we found that bursting
activity was very sensitive to individual variation of these
parameters; only correlated changes could maintain the
activity type.

Parameter Correlations Maintaining Bursting
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Results

Sustaining realistic bursting in HCOs and bursters
In previous work [31], our classification algorithm identified

1,202,139 (11.6%) HCO model instances as HCOs and 424

isolated neuron model instances as bursters (0.26% of the isolated

neurons). To generate the realistic instance populations, we queried

our database, HCO-db [32] with the criteria given in our

definitions (see Methods) for the realistic HCO instances and

realistic burster instances. We recorded the results of these queries

into two separate views (MySQL Views) to facilitate and speed

queries involving these groups in the future. We obtained 99,066

instances (8.2% of the HCOs) in the group of realistic HCOs, and

307 instances (72.4% of the bursters) in the group of realistic

burster instances.

Out of 424 bursters, 263 produce realistic HCOs (1,055

instances) and 419 produce HCOs (21,303 instances) when

coupled with inhibitory synapses. The number of HCO instances

exceeds the number of burster instances because multiple values of

synaptic conductance (�ggSynS or �ggSynG) give rise to HCO instances

for each burster instance. Of the 424 bursters, 307 are realistic

bursters, and 238 of these produce 990 realistic HCOs (instances)

when coupled with inhibitory synapses. That is, 25 bursters (out of

117 bursters that are not realistic) produced 65 realistic HCOs. All

307 realistic bursters produce HCOs when coupled with inhibitory

synapses (16,805 HCO instances).

The vast majority of HCOs in the database are not composed of

bursters isolated neurons but of spiking isolated neurons. For

example, among 99,066 total realistic HCOs, only 1,055 (1.06%)

were composed of bursters (263 instances) (including 990 realistic

HCOs that were composed of realistic bursters (238 instances)) as

stated above, but 94,487 (95.37%) were composed of spiking

isolated neurons (12,443 instances) and 3,524 (3.56%) were

composed of neurons classified as either bistable isolated neurons

(3,096 HCOs from 820 isolated neuron instances), as irregular

isolated neurons (368 HCOs from isolated neuron 55 instances), as

silent isolated neurons (58 HCOs from 28 isolated neuron

instances) or as plateau neurons (2 HCOs from 2 isolated neuron

instances).Thus realistic HCOs could also consist of irregular

(irregular bursters or irregular tonic firers), silent, or even bistable

neurons. Previous work from our group shows that our burster

instances have a high propensity for multistability and that mutual

inhibition makes multistability much less prevalent [33]. Although

we have not tested this idea systematically, we suspect that such

multistability is present in the other classes of isolated neuron

instances.

Figure 1 shows the activity of ten randomly selected instances

from each of the four groups of interest, HCOs, realistic HCOs,

bursters, and realistic bursters. The figure shows that the instances

within each group display different combinations of parameter

values despite having similar bursting activity. For example, the

two instances shown in turquoise and orange from the realistic

HCO group have the same period (Figure 1A) and yet their

parameters combinations are very different (colored connected

lines Figure 1B).

In addition, Figure 1 illustrates that the parameter values of the

instances within each group have wide ranges for almost every

parameter. Some patterns seem to emerge in the parameter ranges

that support our four categories of bursting. For example, both

HCO and realistic HCO instances are possible without h-current

(�ggh = 0), while both bursters and realistic bursters require at least

50% of the canonical level of �ggh.

Figure 2 shows the intrinsic currents and synaptic conductances

of two realistic instances randomly chosen from the ones presented

in Figure 1 (the realistic HCO shown in orange and the realistic

burster shown in black). Both instances replicate (with respect to

period and spike frequency, and for the realistic HCOs duty cycle)

the oscillatory activity of leech HN interneurons, when coupled

(Figure 2A) and in isolation (Figure 2B). For the realistic HCO

instance the leak reversal potential is ELeak = 255 mV (with

minVm = 259.5529mV), and for the realistic burster is ELeak = 2

65 mV (with minVm = 255.4954mV). During the inhibited phase

(interburst interval) of the burst cycle in the HCO, the

hyperpolarization-activated cation current, Ih, slowly activates,

depolarizing the inhibited neuron toward a burst (escape). The

persistent Na+ current, IP, also helps in depolarizing the inhibited

neuron. The burst is formed by the rapid activation of slowly

inactivating low threshold Ca2+ current, ICaS (ICaF is very small in

most instances) and the inactivation of ICaS leads to its gradual

decline leading to a reduced spike frequency and less inhibition of

the opposite neuron (release). During the burst IP sustains

depolarization and a baseline spike frequency, and the outward

currents IK2 and ILeak oppose; during the inhibited phase IP is

opposed by the ILeak and the synaptic currents. The balance

between IP, ILeak, and IK2 appears crucial for maintaining the

excitability of the system and setting the membrane potential

about which the system oscillates (n.b. the 250 mV line). The

spike currents INa and IK2 (IKA is small in most instances) do not

directly participate in burst formation but simply provide a

baseline of excitability against which the more persistent currents

act. When the neurons are isolated (Figure 2B), done in the HCO

model by setting the maximal conductances of both synapses to 0

(�ggSynS = 0 and �ggSynG = 0), basically the same interactions apply

except that only ILeak can oppose IP during the interburst interval

and hyperpolarize the membrane potential sufficiently to activate

Ih (n.b. 250 mV line). The lack of inhibition leads to the apparent

requirement for a relatively hyperpolarized ELeak in burster

instances [3]. Figures 1 and 2 illustrate the complex interactions

of the membrane and synaptic currents and they also suggest

potential interactions. For example, for both instances shown in

Figure 2, the maximal conductances, �ggP and �ggK2 (�ggP = 100%,
�ggK2 = 125% for the realistic HCO, and �ggP = 125%, �ggK2 = 100%

for the realistic burster), have values close to each other, and �ggLeak

is large (175% and 150%, respectively). Is this anecdotal

correlation a potential mechanism in the HCO model to maintain

realistic (similar to animal) bursting activity? Next, we considered

the influence of two parameters at the same time on the activity

type of our four groups of interest.

Visualizing interactions in pairwise parameter variations
To explore visually the relationships existing between two

parameters and a group of instances, we plotted the number of

instances within a group versus all the possible values for two

parameters. Several different methods were tried to make these

Figure 1. Activity and model parameters of ten instances, chosen at random from within each of the four groups defined in the
text. (A) One cycle period of the voltage trace of each of ten random instances from each group. (B) Parameter values of the ten instances in each
group shown in panel A, with corresponding colors. A colored line connects the parameters of the same instance. The parameter values were
normalized for uniform scaling. Lines show very different patterns of parameter values of two instances despite having similar activity. Notice that the
HCO and the burster instances shown might include the instances that were classified as realistic (HCOs and bursters, respectively).
doi:10.1371/journal.pcbi.1003678.g001
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plots, e.g., Supplemental Material Figure S2A and S2B, but we

settled on the methods of Figures 3 and 4. These plot the number

of instances as the size of each point and the two parameters on

the x and y axes and cover all parameter pairs for our realistic

groups of HCOs and bursters (similar but more populated plots for

HCOs and bursters were obtained - data not shown).

Figure 3 shows these two-parameter plots for the realistic HCOs

and illustrates the problems with a pair-wise approach because

very little structure is apparent in any of the plots, but there were

some exceptions. The plot of �ggLeak vs. �ggP shows that there are

exclusive zones of high �ggLeak and low �ggP and of low �ggLeak and high
�ggP, which do not support realistic HCOs. Similarly the plot of �ggK2

vs. �ggP shows that there is a small exclusive zone of high �ggK2 and

zero �ggP and a large exclusive zone of low �ggK2 and high �ggP, which

do not support realistic HCOs. In general low �ggP does not support

realistic HCOs and middle values of �ggP do support realistic HCOs

and the absence of �ggP did not appear to limit the number of

realistic HCO instances.

Figure 4 shows these two-parameters plots for the realistic

bursters and reveal considerably more structure. First a non-zero
�ggh was required to produce realistic bursters and the next smallest

values supported very few instances. The largest number of

instances (28) was obtained for �ggh = 150% and more negative

values of ELeak (270, 265 mV). There appears to be a positive

correlation between �ggLeak and �ggP required to produce realistic

bursters and similarly, but in a looser way, between �ggK2 and �ggP,

and between �ggLeak and �ggK2. Most notably, more positive values of

ELeak, and low values of �ggCaS greatly restrict the number of realistic

burster instances.

These pairwise parameter variation plots suggest potential

parameter relationships between more than two parameters for us

to investigate in our database using more rigorous mathematical

methods to identify all potential linear relationships influencing

activity type.

Exploring linear relationships between parameters with
PCA

To find interactions among the conductance parameters, we

applied the Principal Component Analysis method (PCA) (see

Methods) to each of our four groups of interest. For each group

of interest, we plotted the percent of variability explained by

each principal component (plots in panel A of Figures 5 and 6

for the realistic groups). Then, we identified the main principal

components for each group as the smallest number of PCs for

which the sum of their variances was greater than 95%. For each

of these principal components we plotted the coefficients of their

parameters (panel B of Figures 5 and 6). Tables S1A–D from

Suppl. Material show the values of all the coefficients of the

main principal components and figures S4A and S4B from

Suppl. Material S4 show similar PC plots for the bursters and

HCOs.

Figure 5A shows the PCA results for the realistic HCOs group.

The first six principal components accounted for 96.6% of the

variance. There was not much difference between the variance

values of the main principal components (the biggest difference of

4.6% was between PC 4 and PC 5), which indicates that all main

principal components have similar importance for this group. For

the first four PCs, the coefficients found for the realistic HCO

group (Figure 5) differed from those of the HCO group (figure not

shown). For PC 5 and PC 6, these coefficients were quite similar

for the two groups of instances, meaning that these linear

combinations of conductances have some similar small influence

on both groups. However, since there is no major differences in

the amount of variance accounted for by each component, we

could not discriminate one or two of these sets of coefficients as

being the most influential in the realistic group’s activity.

Therefore, we hypothesize that there are no linear relationships

between any sets of parameters that characterize this group’s

activity (same situation for HCOs).

We also applied PCA analysis to the groups of bursters (figure

not shown) and realistic bursters (Figure 6). For both these groups

the main principal components and their coefficients were

remarkably similar. The first four (of the six total) components

were main principal components that explained 96.88% and

97.32% respectively of the total variance. In both groups, there

was a large difference between the amount of variance accounted

for by the first and second components, which means the first

component is the most important for these groups. The first

component by itself explained 61.2% and 59.66% respectively, of

the variance, which is very close to two-thirds of the total variance,

so this component can be considered as sufficient to characterize

the group or, for a more precise characterization, one can use the

first three components, which together account for .90.3% of the

variance. The coefficients of conductances that generate each of

the first four PCs for both groups (Figure 6B) have the same sign

(positive or negative) and only small differences in their values. In

the first principal component, �ggP, �ggK2 and �ggLeak had large negative

coefficients, while ELeak was the only parameter with a positive

coefficient albeit small. In the second PC, which accounted for

only 17.3% and 19.7% of the variances respectively for these two

groups, �ggCaS dominates followed by �ggK2 with significant negative

coefficients, while only �ggh has a significant positive coefficient.

However, since for both these groups the first PC is so large, we

predicted that �ggP, �ggK2 and �ggLeak, which dominate this component,

should all show positive linear correlations in proportions to their

weights (coefficients) and each should be negatively correlated with

ELeak. Next, we explored visually these predictions of the PCA for

our groups of interest.

5D clickable view for exploring relationships between
parameters

We developed a Matlab tool to visualize five characteristics of a

data set at once: in the present case three parameters which form a

3D parameter space of the data, the number of instances projected

onto each point in this space given by the size of each point, and a

fourth parameter which becomes visible when a point in this space

is clicked with the mouse button. Each point clicked unveils a pie

chart of the 4th parameter showing all instances projected onto

this point in the 3D space. The pie chart is split into slices

according to the number of values possible for the 4th parameter: 5

slices if the 4th parameter is ELeak and in 8 slices each for the other

parameters, with each slice having a different color. If there was no

instance projected into the 3D space for a particular value of the

4th parameter, then its corresponding slice was not shown in the

pie chart. For a better visualization of the points projected onto the

3D plot, their deepness (i.e., their z- axis parameter values) was

color coded with a colormap starting from dark blue shades for

closest points (at 0% values) to light blue shades for farthest points

Figure 2. Intrinsic currents and synaptic conductances of two realistic instances presented in Figure 1. The traces shown are color
coded for easy comparison across the two instances. (A) Data corresponding to the realistic HCO instance colored in orange in Figure 1
(minVm~{59:5529mV ). (B) Data corresponding to the realistic burster colored in black in Figure 1 (minVm~{55:4954mV ).
doi:10.1371/journal.pcbi.1003678.g002
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(at 175% values). Each projected point was depicted by a circle

filled with the color according to this mapping.

We used this 5D clickable tool to visualize the characteristics of

our groups of interest. For each main principal component (see

previous section) of each group, we selected its three parameters

with the biggest coefficients that have the same sign (either positive

or negative) and then we selected the parameter with the biggest

coefficient of the opposite sign. The first 3 parameters selected

were the parameters of the 3D space used by our clickable tool,

and the last one was used for plotting the pie chart of each point

plotted.

Figure 7 shows the views obtained by applying our 5D clickable

tool to the groups of bursters (Figure 7 A) and realistic bursters

(Figure 7 B). In both groups, the first principal component was the

most important PC for each group (with variances of approxi-

mately 60%). The three biggest coefficients of this PC were for �ggP,

Figure 3. Pair-wise parameter variations for the realistic HCO instances. Plot of all instances within the realistic HCO group projected onto
the 2D space given by two parameters. The first parameter is shown on x axis. The second parameter is shown on y axis. Both parameters are color
coded, using shades of magenta on x axis and of turquoise on y axis, from dark shades for low values (270 mV for ELeak and 0% for the other
parameters) to light shades for high values (250 mV for ELeak.and 175% for the other parameters). The number of instances projected onto each
point in the space is shown by the size of the circle surrounding it. To be able to visualize all the points (as there are many points with very few
instances and many points with thousands of instances), we used the natural logarithm to adjust the size of the points (formula used:
ptSize~log noInstz1ð Þ, we added a value of 1 to be able to show a point with one instance on the plot). The legend shows the size of each point on
the plot and its corresponding real number of instances. The highlighted subplot of �ggLeak vs. �ggP shows that there are exclusive zones of high �ggLeak and
low �ggP and of low �ggLeak and high �ggP, which do not support realistic HCOs.
doi:10.1371/journal.pcbi.1003678.g003
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�ggLeak, and �ggK2 (negative). We used them as the three axes of the

3D data projection space in our visualization tool. The biggest

positive coefficient was for ELeak, which we used as the 4th

parameter for display as pie charts in the visualization. The group

of bursters had 91 points in the 3D space given by (�ggP, �ggK2, �ggLeak),

and the realistic group had 83 points in this space. In both groups,

these points cluster around the main diagonal indicating that the

amounts of �ggP, �ggK2, and �ggLeak are positively correlated. Expansions

of all the pie charts for both bursters and realistic bursters revealed

that the range of permissible ELeak’s diminished and ELeak had to

be more negative as the values of �ggP, �ggK2, �ggLeak increased (from all

ELeak values for �ggP = 0 to only ELeak = 20.07 for �ggP = 175%).

Figure 8 shows the views obtained by applying our 5D clickable

tool to the groups of HCOs (Figure 8 A) and realistic (Figure 8 B)

HCOs. In both groups, we used the 3D space given by �ggP, �ggK2,

and �ggLeak. For the 4th parameter, we used ELeak. We chose this

parameter space to compare the HCO groups with the burster

groups in Figure 7. However, no clustering around the main

diagonal, similar to that observed in Figure 7, emerged in these

plots. Similar plots considering different parameters also failed to

reveal such a relationship among parameters (see Supplemental

Material Figure S3 for these plots). The plots in Figure 8 showed

similar 3D shapes for the HCO and realistic HCO instances. This

3D shape has a complicated contour, similar to a wedge, and it is

Figure 4. Pair-wise parameter variations for the realistic burster instances. Plot of all instances within the realistic burster group projected
onto the 2D space given by two parameters. The first parameter is shown on x axis. The second parameter is shown on y axis. Both parameters are
color coded, using shades of magenta on x axis and of turquoise on y axis, from dark shades for low values (270 mV for ELeak and 0% for the other
parameters) to light shades for high values (250 mV for ELeak.and 175% for the other parameters). The number of instances projected onto each
point in the space is shown by the size of the circle surrounding it. The highlighted subplot of �ggLeak vs. �ggP shows a positive correlation between �ggLeak

and �ggP required to produce realistic bursters.
doi:10.1371/journal.pcbi.1003678.g004
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biased in the number of instances toward low �ggLeak. In contrast

with burster instances (Figure 7) expansions of all the pie charts of

Figure 8B revealed no contraction in the range of permissible

ELeak’s until the highest (175%) values of �ggP, �ggK2, �ggLeak were

reached, at which the ELeak‘s range was reduced to the four most

negative values.

In Figure 9 we plotted the subset of instances from each group

that have �ggCaS, �ggh, �ggSynS, and �ggSynG for the HCOs, and �ggCaS and
�ggh for the bursters at their canonical (100%) values (see Section

Half-center oscillator model). For HCOs we had 478 such

instances (Figure 9 A), for the realistic HCOs we had 43 instances

(Figure 9 C), for the bursters we had 15 (Figure 9 B), and for the

realistic bursters 10 (Figure 9 D). The plots of these points in the

3D space of (�ggP, �ggK2, �ggLeak) for burster groups (Figure 9 B and D)

showed an apparent linear correlation. The subset of the realistic

HCOs (Figure 9 C) also showed an apparent linear correlation

between �ggLeak, �ggP, and �ggK2. Note that the boundaries of this cluster

of points are defined by 50%–150% for �ggP, 25%–175% for �ggLeak,

and 75%–175% for �ggK2. These plots (Figure 9 B,C,D) show that, if

for a group of instances one restricts the parameter space to an

appropriate subset of parameters, then linear correlations between

the remaining parameters may emerge. Next we investigated in

more detail the apparent linear correlations observed between �ggP,
�ggK2, and �ggLeak for the burster and realistic burster instances.

�ggP, �ggK2, and �ggLeak correlate linearly for the bursters and the
realistic bursters

Figure 10 shows a 3D plot of the instances of the burster groups

into the space defined by �ggP, �ggK2, �ggLeak. In this plot burster

instances that are not realistic are shown in blue shades and the

realistic burster instances are shown in red shades. Each point in

this 3D space is depicted by a rectangle in (�ggP, �ggLeak) space. The

number of instances projected onto each point in the space is

shown by the size of a colored rectangle. Color maps show the

value of �ggK2 going from 0 (dark shades) to 175% (light shades).

We fitted a least square fit regression line to each group of points

(3D Orthogonal Distance Regression (ODR) line). The 3D ODR

line is least distant from all the points and contains the centroid of

points, which is the 3D point that has the mean of the points on

the three axes. The direction vector that defines the line is given by

the coefficients for the first principal component (PC), i.e., the first

column of the coefficients returned by the PCA (in our case

Matlab’s princomp function) when applied to the set of 3D points

(see Supplemental Material Text S1 for detailed mathematics and

the coefficients of each equation corresponding to the two ODR

lines shown in Figure 10, see [34] for Methods explanation, and

[35] for an example).

For the realistic bursters the line is shown in Figure 10 in

magenta, and for the not realistic bursters in cyan. The two lines

did not intersect in the 3D space illustrated. However, their

projections in either �ggLeak, �ggK2 plane or the �ggP, �ggK2 plane did

intersect with a small angle, but did not intersect in the �ggLeak, �ggP

plane. That is, �ggLeak and �ggK2 (and similarly �ggP and �ggK2) have

slightly different influences on the two groups of instances, while
�ggLeak and �ggP have the same effect on the two groups. Interestingly,

the main diagonal of the 3D space of �ggLeak, �ggP, �ggK2 passes though

many points from either group. Both fitted lines are on the same

side of the main diagonal (toward higher values of �ggLeak), but do

not intersect it in the space illustrated. These two lines seem almost

parallel in the �ggLeak, �ggP plane, with the magenta line further shifted

toward higher values of �ggLeak than the cyan line. The centroids

and the two lines give insight into the characteristics of the two

groups. The magenta line shows a tendency for the realistic

instances to be at the high values on all axes. That is, large values

of �ggP, �ggK2, and �ggLeak produced more realistic instances than the

small values. The cyan line shows a tendency for the not realistic

bursters to be at the low and middle values on all axes (in other

words, small and moderate values of �ggP, �ggK2, and �ggLeak produced

more not realistic instances than the large values).

The magenta line has a slightly less steep slope than the cyan

line, and a moderate slope (with angle less than 45o) if compared

with the main diagonal of the 3D space. Precisely, the starting

point of the magenta line in the space shown is higher than the

starting point of the cyan line, and the end point of the magenta

line is lower than the end point of the cyan line. When there was

no �ggP and �ggLeak, there were more realistic bursters for larger values

of �ggK2 and more not realistic bursters for the lower values of �ggK2

(0%, 25%, and 50%). The larger the values of �ggP, �ggK2, and �ggLeak

are, the larger the number of realistic instances and the smaller the

number of the not realistic instances.

Influence of �ggP, �ggK2, and �ggLeak on the realistic instances
We explored the overlap of not realistic and realistic bursters in

the �ggP, �ggK2, and �ggLeak space of Figure 10. Some of the points

(shaded rectangles) in this linear relationship (50 out of the total of

91) represent only not realistic or only realistic instances. Eight

points (light blue circle), each corresponding to eight instances,

were characterized as only not realistic (Figure 11 A). They were

separated from the 42 points (red circle), corresponding to 134

instances, that were characterized as only realistic. However, 41

points (purple circle) represented 282 both realistic and not

realistic instances. Thus there are a total of 424 instances

represented in Figure 10. Having both realistic and not realistic

burster instances projected into the same point in (�ggP, �ggK2, �ggLeak)

space means that these instances were influenced by additional

parameters (either �ggCaS, �ggh, or ELeak) toward being realistic or not.

We also explored overlap for the HCOs in in the same 3D space

as Figure 10 (data not shown) and found that the three maximal

conductances of �ggP, �ggK2, and �ggLeak were not sufficient to

characterize uniquely realistic instances (Figure 11 B). 114 points

(light blue circle), corresponding to 66,962 instances, were

characterized as not realistic HCOs (i.e., they are HCO instances

that do not satisfy the necessary criteria to be also characterized as

realistic instances). 243 points (purple circle) included both realistic

and not realistic HCO instances. Having both realistic and not

realistic HCO instances projected into the same point in (�ggP, �ggK2,
�ggLeak) space suggests that additional parameters are needed to

separate these two types of instances (either �ggCaS, �ggh, �ggSynS, �ggSynG,

or ELeak). Thus, for HCOs there is no point in the 3D space that

represents only realistic instances (Figure 11 B), which means that

these instances are characterized by more than the parameters

which define the 3D space.

We then analyzed how the three parameters (�ggP, �ggK2, �ggLeak)

were distributed in the groups of bursters and HCOs. Figure 12 A

shows the distributions of the realistic and of the not realistic

bursters on each of the three axes of the 3D space given by �ggP, �ggK2,

and �ggLeak (Figure 10). We performed a two-sample Kolmogorov-

Smirnov test on the two distributions obtained on each axis. Each

test rejected the null hypothesis that the two distributions were

from the same continuous distribution at the 5% significance level

(h = 1 in all cases, pLeak = 0.0014, kLeak = 0.875, pP = 0.0014, kP

= 0.875, pK2 = 0.0098, kK2 = 0.75). Having different distributions

for the two groups indicates that the realistic instances showed

parameter distributions which can be used to separate them from

the not realistic instances. First, both groups show almost the same

number of instances if any of �ggP, �ggK2, or �ggLeak is equal to 0. Then,

the distributions diverge. On the �ggP axis, the number of not

realistic instances decreased and stayed below 18 with an increase
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in �gggP whereas for �ggP = 0 both groups have a large number of

instances. The distribution of the realistic instances on the �ggP axis,

showed no clear tendency with a decrease in the number of

instances for �ggP = 25% followed by an increase at �ggP = 100% then

again a decrease with a minimum at �ggP = 175%. On the �ggLeak axis,

the two distributions seem to have the same tendencies as the

distributions on the �ggP axis, but here the peak in number of

realistic instances occurred for �ggLeak = 125%. On the �ggK2 axis, the

distribution of the not realistic bursters showed a peak for
�ggK2 = 25%, then the distribution showed a continuous decrease in

the number of instances with increasing �ggK2. On this axis, the

realistic distribution had a peak at �ggK2 = 75%, followed by a slight

decrease with increasing �ggK2. Summing up, the largest number of

only not realistic bursters occurred for small values of these

conductances (0–25%) and the largest number of realistic bursters

occurred for moderate to large values of these conductances (50–

150%).

Figure 12 B shows the distributions of the realistic and not

realistic HCO instances on each of the three axes of the 3D space

given by �ggP, �ggK2, and �ggLeak. Similar to burster instances shown

above, the two-sample Kolmogorov-Smirnov test applied to these

two distributions rejected the null hypothesis (p.0.05) that they

are from the same continuous distribution (h = 1 in all cases,

pLeak = 0.00015562, kLeak = 1, pP = 0.00015562, kP = 1, pK2

= 0.0014, kK2 = 0.875). On the �ggP axis, both distributions showed

a peak in their number of instances at �ggP = 75%. On the �ggK2 axis,

the distribution of the not realistic HCO instances showed a

continuous increase in number of instances with increasing �ggK2.

The distribution of the realistic HCO instances showed a peak in

the number of instances at �ggK2 = 150%. On the �ggLeak axis, the

distribution of the not realistic HCO instances showed a

continuous decrease in number of instances with increasing �ggLeak.

. The distribution of the realistic HCO instances showed a peak in

the number of instances at �ggK2 = 25%, then a continuous decrease

in the number of instances with increasing �ggLeak. Summing up, the

largest number of realistic HCO instances occurred for moderate

values of �ggP (50–125%) and large values of �ggK2 (canonical and

above, 100–175%). �ggLeak above 125% reduced the number of

realistic HCO instances.

Period’s sensitivity to variations of �gg’s
To assess the sensitivity of period to variation of �ggLeak, �ggK2, and

�ggP, we queried the HCO-db database to build up the families

existing within each group of interest. We define a family as

being a sub-set (of a group) of instances that have all the same

parameter values except one (e.g., all realistic bursters that vary

only by �ggP constitute a family). Note that one can partition a group

into families according to the number of members in the family.

Surprisingly, for the groups of bursters and realistic bursters, all

the instances of each group were part of families of one member

only when �ggP was varied, which means that activity of these groups

of instances is very sensitive (i.e. not robust) to changes in �ggP and

the effect of �ggP on period could not be assessed. The activity of the

realistic bursters group also turned out to be very sensitive also to

changes in �ggLeak, with all instances being part of families of only

one member. The activity of the bursters was slightly less sensitive

to changes in �ggLeak with 423 instances as members of families of

one member and just 2 instances as members of a family of 2

members, which also precluded an assessment of an effect �ggLeak on

period. From previous research [3,11,36], we knew that all three of

these parameters influence the activity type of model instances.

However, while we did expect the activity of the burster instances

to be very sensitive to �ggLeak [3], we did not expect such a big

influence of �ggP. Finally, the activity of the realistic bursters showed

less sensitivity to �ggK2 variations than to �ggLeak and �ggP variations

including 26 families of 2 members and 2 families of 3 members.

Burster instances showed similar sensitivity to changes in �ggK2

variations as the realistic instances including families of 2, 3, and 4

members (45, 2, and 1, respectively). For all families of both

bursters and realistic bursters, an increase in �ggK2 resulted in a

monotonic decrease of the period. For each family, first we

ordered in ascending order its members by the amount of the

parameter varied (here �ggK2), and then we calculated the variation

(here decrease) of the period as being the difference between the

periods of the last and first members of the respective family. The

average decrease of the period for each family were: 22.43 s

(range 24.46 to 20.52) for realistic instances of families of 2

members; 23.16 s (range 23.18 to 23.14) for realistic instances of

families of 3 members; 22.41 s (range 24.46 to 20.52) for burster

instances of families of 2 members; 23.35 s (range 23.52 to 2

3.18) for bursters of families of 3 members; and the only family of 4

members of the bursters had a decrease of 24.18 s of the period

values.

The activity of the realistic HCO group was quite sensitive to �ggP

also (92,970 families of one member, and 3,048 families of 2

members), but less sensitive than for the realistic burster instances.

As expected [3], the activity of this group was less sensitive to �ggLeak

than the activities of the burster and realistic burster groups

(66,611; 11,873; 2133; 452; 92; and 7, respectively, families of 1–6

members). Finally, the activity of the realistic HCO group showed

a lesser sensitivity to changes in �ggK2 than the sensitivity to �ggLeak

(68,702 families of one member, 13,163 families of 2 members,

1,299 families of 3 members, 34 families of 4, and 1 family of 5

members). As found by Hill et al. [29], an increase in �ggK2 resulted

in a monotonic decrease of the period for most of the families of

this group. Only 19 (out of 13,163) families of 2 members showed

an increase in period. The average decrease of the period for

each family were: 23.32 s (range 29.75 to 1.29) for families of

2 members; 24.87 s (range 29.65 to 20.38) for families of 3

members; 26.59 s (range 29.09 to 22.31) for families of 4

members; and the only family of 5 members had a decrease of 2

9.46 s of the period values. Then, an increase of �ggP resulted in an

increase of the period for most �ggP families of 2 members (3,014 out

of 3,048). The average increase in the period values was 4.255 s

(range 21.507 to 9.778) for all these 2 member families. Based on

the large number of multimember families, it seems that in the

heartbeat HCO, inhibition changes the influence of �ggP, �ggK2, and
�ggLeak on network activity by making the activity of HCO instances

more robust to changes in these parameters.

Discussion

How does a given aspect of the electrical activity of neurons and

networks change as the value of a parameter changes? Here, we

focused on how intrinsic membrane and synaptic parameters

interact to maintain functional bursting activity in an HCO model

and in bursters from this HCO. Specifically, we asked how does

the bursting activity of leech heart interneurons in isolation or in

Figure 5. Principal components for the realistic HCOs. (A) The most important principal components for the group are the first six
components with their sum of variance .95%. The line above the bars shows the cumulative percentage of the variance. (B) The coefficients of the
linear combinations of the parameters that generate these first six (principal) components.
doi:10.1371/journal.pcbi.1003678.g005

Parameter Correlations Maintaining Bursting

PLOS Computational Biology | www.ploscompbiol.org 11 June 2014 | Volume 10 | Issue 6 | e1003678



Parameter Correlations Maintaining Bursting

PLOS Computational Biology | www.ploscompbiol.org 12 June 2014 | Volume 10 | Issue 6 | e1003678



an HCO change by changing parameters in a defined parameter

space? To systematically explore the parameter space of the HCO

and corresponding burster models, in our previous work [31], we

simulated about 10.5 million model instances, whose character-

istics we recorded into a database named HCO-db [31,32].

We tried dimensional stacking and other techniques [25,26,37]

to visualize globally the effect of parameter changes on activity

type, but it was difficult to see the effects of all parameters. So we

simplified by looking at the influence of only two parameters at a

time (see Results, sub-section Visualizing interactions in pairwise

parameter variations).

Pairwise correlations in model isolated HN neurons and
HN HCOs

Similar to the results presented in [3], our pairwise plots

revealed that several parameters work in pairs to produce more

burster (figure not shown) and realistic burster instances (Figure 4):

increasing �ggh together with more hyperpolarized ELeak; making
�ggCaS larger, together with a larger �ggLeak (not monotonically, but

with a wave shape); increasing �ggK2 together with more depolarized

ELeak; increasing �ggLeak (above 50%) together with more hyperpo-

larized ELeak - for more depolarized ELeak and smaller �ggLeak there

were less number of instances in each group than when ELeak was

more hyperpolarized. For the HCOs (figure not shown) and

realistic HCOs (Figure 3), decreasing �ggLeak together with more

depolarized ELeak produced the most instances (maximum at
�ggLeak = 25%). However, from our pairwise plots we cannot assess

the potential relationships between three parameters, as for

example those stated in [3] between �ggLeak, ELeak and �ggCaS. Our

aim here was to find all potential existing correlations in our

models whether between two, three or more parameters.

Linear correlation between �ggLeak, �ggK2, and �ggP characterizes
realistic bursting in isolated neuron instances (bursters)

Recent studies, both experimental [16,17,19,23,27] and mod-

eling [11,21,20,38], have shown in several systems that consistent

activity is maintained despite a 3–5 fold variation from animal to

animal or model instance to model instance among ionic and

synaptic conductances and that correlations exist between these

parameters. Thus the suggestion has arisen that the functional

activity of a given neuron may reside in the set of parameter

correlation rules it maintains rather than in the value of any

particular parameter. However, the precise combinations of

parameters that is adequate to preserve functional neuronal or

network activity in not fully elucidated for any system. Most

studies have reported positive linear correlations [19,23], while

recently [21,27] have shown negative linear correlations, and

several theoretical studies have reported the existence of nonlinear

correlations [11,20]. Such correlations have been reported in

single cells [39] and in networks of two or more cells correlations

[19,27] and they have been found between two parameters

[21,27], as well as three or four parameters [3,27,40,17]. The

potential for general insights into mechanisms for bursting in single

neurons and HCOs motivated us to pursue this modeling study

despite challenges imposed by large 8-dimensional parameter

space that it presented.

To find potential linear correlations among our varied

parameters, we applied PCA to our four activity groups of

interest. This method showed that for the bursters and the realistic

bursters groups there is a linear correlation between the six

parameters out of which �ggLeak, �ggK2, and �ggP had each about 3 times

or more importance than the other three parameters (Figure 6).

Plots (Figure 7 A, B) of each group’s instances in the 3D space of
�ggLeak, �ggK2, and �ggP showed a linear correlation for each group

around the main diagonal (Figure 10). Two corollaries emerged

from our analysis: 1) for the bursters and the realistic bursters the

range of permissible ELeak’s diminishes and ELeak must be more

negative as the values of �ggLeak, �ggK2, and �ggP increase (Figure 7); and

2) moderate to large values of �ggLeak, �ggK2, and �ggP produced more

realistic bursters than the small values, and small to moderate

values of �ggLeak, �ggK2, and �ggP produced more not realistic bursters

than the large values (Figure 12).

The above observations indicate that these three conductances

work together to produce burster and realistic burster instances

and begin to pinpoint the mechanisms supporting bursting in

isolated heart (HN) interneurons. Olypher and Calabrese [11]

used sensitivity analyses to predict coordinated changes of

parameters that would lead to constant activity in the HN HCO

model. They found that �ggP opposes both �ggLeak and �ggK2, with �ggLeak

and �ggK2 having negative relative sensitivity of almost half of �ggP‘s

relative sensitivity (positive). Our analyses (Figures 7 and 10) yield

similar yet contrasting results; �ggLeak opposes �ggP, but in an almost

equal relationship (see their weights in Figure 6 B). A small amount

of �ggLeak requires a small amount of �ggP to produce bursting, and a

large amount of �ggLeak requires a large amount of �ggP (within some

range). In addition, if �ggP is small then �ggK2 is small (within a range),

and if �ggP is large then �ggK2 must be large. Interestingly, all three

parameters have negative weights in the equation given by the

PCA method, with �ggP and �ggLeak having almost equal weights and

being slightly bigger than the weight of �ggK2. Thus it appears that

none of these three parameters is sufficient by itself to produce

burster and realistic burster instances, but they must work together

(in linear combination) in almost equal amounts towards

producing the respective instances. PCA guarantees that all

existing linear combinations (in any number of parameters) that

characterize a set of data will be found, should such linear

combinations exists. Thus our bursters and realistic bursters

groups are characterized by the single dominant linear combina-

tion between parameters returned by the PCA method (Figure 6

A).

From a mechanistic standpoint, the observed correlation of
�ggLeak, �ggK2, and �ggP and their corollaries fit our current

understanding of bursting in HN neurons. None of these three

currents show inactivation and their activation is relatively fast

compared to the burst period (instantaneous in the case of ILeak).

IK2 is active only during the burst phase, owing to its depolarized

range of activation, and provides outward current that limits

depolarization. IP is active throughout the burst cycle owing to it

broad and shallow activation curve, and it provides the inward

current that drives baseline spiking activity. ILeak is also active

throughout the burst cycle and provides the outward current

necessary for repolarization after the burst. Essentially IK2 must

oppose IP during the burst and ILeak must oppose it during the

interburst interval. When �ggLeak, �ggK2, and �ggP are all small then IP is

very weak during the interburst interval and a small ILeak (i.e.,

small �ggLeak) even with a relatively depolarized ELeak can effectively

oppose it. But when �ggP is moderate or large (i.e., a large IP) then a

large �ggLeak with a relatively negative ELeak (i.e., a large ILeak) is

Figure 6. Principal components for the realistic bursters. (A) The most important principal components for the group are the first four
components with their sum of variance .95%. The line above the bars shows the cumulative percentage of the variance. (B) The coefficients of the
linear combinations of the parameters that generate these first four (principal) components.
doi:10.1371/journal.pcbi.1003678.g006
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necessary to oppose IP during the interburst interval (Figure 7 pie

charts). Based on work with canonical HN models and analyses in

the living neurons [29,3,13] we hypothesize that ICaS is critical for

bursting in isolated HN neurons and that the burst duration is

controlled by its inactivation dynamics, which in our model are

fixed. This hypothesis is further supported by the data of Figure 4

C. Because ILeak is the main determinant of the interburst interval,

a small �ggLeak will then lead to short interburst intervals and thus to

more not realistic burster instances (Figure 12).

An absence of linear correlations between parameters
characterizes HCO and realistic HCO instances

For the groups of realistic and HCO instances, PCA did not find

any linear relationship between the parameters (Figure 5). Plots

(Figure 8 A, B) of the instances of each HCO group in the 3D

space defined by �ggLeak, �ggK2, and �ggP, which revealed correlations for

the burster groups, showed that these groups of instances form

complex shape, like a wedge. Goldman et al. [7] in their study on

the robustness of activity type in single model neurons found

similar relationships between parameters supporting bursting. This

non-linearity suggests that these three parameters are not enough

to characterize the HCO and realistic HCO groups. We

hypothesize that �ggLeak, �ggK2, and �ggP play the same role in HCOs

as outlined above for bursters: the added factor being synaptic

inhibition, which provides outward current during the interburst

interval. Because synaptic inhibition provides outward current

during the interburst interval, the system no longer depends on a

large �ggLeak with a relatively negative ELeak to oppose a large IP, and

in fact small �ggLeak’s are favored (Figure 8). Note that the pie chart

analysis of Figure 8 B shows directly a lack of restriction on ELeak

throughout the region of realistic HCO bursting. Figure 3 further

corroborate this hypothesis by showing that the number of realistic

HCO instances increases dramatically as �ggSynS increases.

Our plots in Figure 9 show that one can obtain linear

correlations between parameters for HCOs when working in a

reduced parameter space. In our case, we reduced the parameter

space to only three maximal conductances, �ggLeak, �ggK2, and �ggP, and

kept the rest of the parameters at their canonical values. Then we

plotted the instances of our four groups of interests into this new

3D space. The plot of the reduced set of HCO instances still

showed a complex relationship between the three parameters,

while the plot of the reduced sets of realistic HCO instances (and

also of bursters and realistic bursters instances) showed linearity.

The reduced set of realistic HCOs produced a linear cluster in this

space, and the reduced sets of bursters and realistic bursters

produced lines similar to those seen to the unreduced sets

(Figure 10).

How robust are the realistic bursters to variation of �ggLeak,
�ggK2, and �ggP?

Our analysis here indicates that a strong correlation between
�ggLeak, �ggK2, and �ggP, is critical in determining activity in bursters and

realistic bursters and thus bursting activity should be very sensitive

to their individual variation. Sensitivity analysis is the most

common computational method used to assess the influence of a

parameter on the activity type in neuronal models [29,11,7,36].

Previous work showed that the bursting activity of isolated HN

model neurons is very sensitive to �ggLeak, so that HN neurons are

not robust busters under experimental conditions that alter leak

properties [3]. We have confirmed and extended that finding here

using our database of model instances by showing that �ggLeak

families have only one member. We have similarly shown a

strong sensitivity to �ggP and to a slightly lesser extent to �ggK2.

Robustness of activity state requires correlated changes in these

three parameters.

When configured as an HCO, realistic bursting activity

becomes substantially more robust to individual changes in these

parameters, which can be seen as both the expanded occupancy of

the parameter space in Figure 8 and by the large number of �ggLeak,
�ggK2, and �ggP families with multiple members. Thus mutual synaptic

inhibition adds robustness to bursting activity in HN neurons.

Correlated conductance and robustness of activity states
Several recent studies suggest that correlated parameters could

be key factors in maintaining functional activity states in neurons.

Goldman et al. [7] found that a model neuron’s robustness (ability

to maintain functional activity, e.g. regular bursting) is determined

by its sensitivity to sets of parameter changes. Hudson and Prinz

[21] found that conductance correlations contribute to the

robustness of critical features of electrical activity. Lamb and

Calabrese [41] found partial conductance correlations that

contribute to the activity phase of the leech heart motor neurons.

The mechanisms that maintain functional bursting in the pyloric

CPG of the stomatogastric nervous system of crabs employ several

key parameter correlations (linearly or not) [17,18,20,21,23] which

appear necessary for the maintenance of activity state. Likely

evolution promoted such mechanisms to maintain robust activity

and robustness seems to be achieved in the oscillator heart

interneurons of the leech heartbeat CPG by three linearly

correlated maximal conductances of �ggP, �ggLeak and �ggK2. Changes

in any of these three parameters (�ggP, �ggLeak or �ggK2) must be

accompanied by changes in the other two parameters in a linear

correlation to maintain the neurons in a realistic bursting activity

mode. Our results imply that these three parameters compensate

for each other’s variations to keep bursting functional. Moreover

they show that linking these neurons by mutually inhibitory

synapses into a HCO increases robustness. We leave unanswered

for future work the question of how period is modulated while

robustness is maintained.

Methods

Half- center oscillator model (HCO)
We used Hill et al.’s model [29] of a half-center oscillator

(HCO) which produces electrical activity (rhythmic alternating

bursting of mutually inhibitory neurons) similar to that observed

in the living system (in the heartbeat central pattern generator or

CPG of the leech). The model is publicly available on ModelDB

repository (https://senselab.med.yale.edu/ModelDB/), accession

number 19698. The HCO model consists of a two reciprocally

inhibitory model interneurons, represented as single isopotential

electrical compartments with Hodgkin and Huxley [30] type

intrinsic and synaptic membrane conductances. Each compart-

ment contains 8 voltage-dependent currents, five inward currents

Figure 7. 5D clickable view of the bursters and realistic bursters. Plot of all instances within a group projected onto the 3D space given by
the maximal conductances of IP, IK2 and ILeak. The number of instances projected onto each point in the space is shown by the size of the circle
surrounding it. Each point is clickable; it displays a pie chart of the leak reversal potential (ELeak) of all instances from the group having the same
values of �ggP, �ggK2, and �ggLeak as the ones of the clicked point. Once clicked, a point (and its pie chart) are surrounded by a colored (here red and green)
circle to differentiate it from the non-clicked points. (A) Burster instances. (B) Realistic burster instances.
doi:10.1371/journal.pcbi.1003678.g007
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INa - a fast Na+ current, IP - a persistent Na+ current, ICaF - a

rapidly inactivating low-threshold Ca current, ICaS - a slowly

inactivating low-threshold Ca current, Ih - a hyperpolarization-

activated cation current) and three outward currents (IK1 - a

delayed rectifier-like K current, IK2 - a persistent K current, IKA -

a fast transient K current). The model has two types of inhibitory

synaptic transmission between the two interneurons: graded

transmission (SynG) and spike-mediated transmission (SynS). The

graded transmission SynG was modeled as a postsynaptic

conductance controlled by presynaptic Ca2+ concentration and

the spike-mediated transmission SynS was modeled as a

postsynaptic conductance triggered by presynaptic spikes. The

values for the maximal conductances and the leak reversal

potential (free parameters in the model) that we used for our

canonical model are �ggCaS = 3.2 nS, �ggh = 4 nS, �ggP = 7 nS,
�ggK2 = 80 nS, �ggLeak = 8 nS, �ggSynS = 60 nS, �ggSynG = 30 nS,
�ggNa = 200 nS, �ggCaF = 5 nS, �ggK1 = 100 nS, �ggKA = 80 nS, and

ELeak = 260 mV [31]. The kinetics, voltage-dependencies, rever-

sal potentials of the intrinsic currents, and the synaptic

connections of the HCO model interneurons have all been

verified and previously adjusted to fit the biological data of leech

interneurons [2,14,29,36,42]. The differential equations of the

model are given in the following.

The equation of the membrane potential (V) of each neuron is

given by:

C
dV

dt
~{ INazIPzICaF zICaSzIhzIK1zIK2zIKAð

zILeakzISynSzISynG{Iinject

�
,

where C is the total membrane capacitance (C~5 � 10{10F ), Iion

is an intrinsic voltage-gated current, ILeak is the leak current, ISynS

is the graded synaptic current, ISynS is the spike-mediated synaptic

current, and Iinject is the injected current. Voltage-gated currents

are given by

Iion~�ggionmxhy V{Erevð Þ, ILeak~�ggLeak V{ELeakð Þ,

Figure 8. 5D clickable view of the HCOs and realistic HCOs. (A) Plot of the HCO instances onto the 3D space given by the maximal
conductances of IP, IK2 and ILeak. No clicked point is shown here. (B) Similar plot for the realistic HCO group. Each clicked point displays a pie chart of
the ELeak reversal potential of all instances from the group having the same values of �ggP, �ggK2, and �ggLeak as the ones of the clicked point.
doi:10.1371/journal.pcbi.1003678.g008

Figure 9. 5D clickable views of the instances as projected onto the parameter space of �ggLeak, �ggK2, and �ggP when maximal conductances
of �ggCaS, �ggh, and of (if present) synapses are at the canonical values. (A) HCO instances. The plot shows a wedge-like 3D shape similar to the
one in Figure 8A. (B) Burster instances with �ggCaS and �ggh at the canonical values. (C) Realistic HCO instances. The cluster suggests linear correlations
between the parameters. (D) Realistic burster instances with �ggCaS and �ggh at the canonical value. Similar to burster instances case (Figure 9B), the plot
shows instances situated close to a line marking the main diagonal of the space.
doi:10.1371/journal.pcbi.1003678.g009
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dm

dt
~

f m
? a,b,Vð Þ{m

tm a,b,c,d,Vð Þ ,
dh

dt
~

f h
? a,b,Vð Þ{h

th a,b,c,d,Vð Þ , f m
?,f h

?

given by f? a,b,Vð Þ~ 1

1zea Vzbð Þ , tm,th

given by t a,b,c,d,Vð Þ~cz
d

1zea Vzbð Þ

where �ggion is the maximal conductance, Eion is the reversal

potential, and the activation and inactivation variables for the

parameters are given in Table 1.

ISynG~�ggSynG

P3

CzP3
V{ESyn

� �
, C~10{32coulombs3,

dP

dt
~ICa{BP, B~10s{1,

ICa~max 0,{ICaF {ICaS{Að Þ, dA

dt
~

A? VPreð Þ{A

0:2
,

A? VPreð Þ~ 10{10

1ze{100 VPrez0:02ð Þ ,

where VPre is the presynaptic membrane potential.

ISynS t,Vð Þ~ V tð Þ{ESyn

� �
�
X?
s~1

M�ggSynSfSynS t{tsð Þ,

where �ggSynS is the maximal synaptic conductance, ts is the time of

a spike event, and M is the modulation variable of the

synapse determined from
dM

dt
~

M? VPreð Þ{M

0:2
, M?~0:1z

0:9

1ze{1000 VPrez0:04ð Þ . The synaptic function is given by

fSynS tð Þ~a e
{t
t1 {e

{t
t2

� �
,

Figure 10. Comparison of the realistic and not realistic burster instances. Both groups show a linear correlation between maximal
conductances of �ggLeak, �ggK2, and �ggP. Instances from the realistic and not realistic burster groups are plotted in the space defined by �ggP, �ggK2, �ggLeak. Burster
instances that are not realistic are shown in blue shades and the realistic instances are shown in red shades. Values of �ggK2 are color coded from 0 with
dark color to 175% with light color (color maps). The 3D orthogonal distance regression line corresponding to each group is shown with magenta for
the realistic group and with cyan for not realistic subgroup.
doi:10.1371/journal.pcbi.1003678.g010
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where a~
1

e

{tpeak
t1 {e

{tpeak
t2

is a normalization constant with

tpeak~
t1t2ln

t1
t2

� �

t1{t2
, and the decay (t1~0:011) and rise

(t2~0:002) times of the synaptic conductance.

In our previous work [31], we performed extensive

simulations of this HCO model by systematically varying eight

key parameters (a brute-force approach). Figures 2 A and B

show the intrinsic currents and the synaptic conductances of

two randomly chosen simulated instances, one a realistic HCO

and one a realistic burster. The figures show how the currents

interact (including their ratio and the timing) to produce the

realistic leech bursting activity. One can see in the examples

that IA and ICaF are very small, and thus have a small influence

on the cell’s activity. INa and IK1 are mainly involved is spiking

and must be co-varied to maintain constant spiking during the

burst. While spike frequency is an important determinant of

HCO activity due to inhibition of the opposite neuron, it is

better controlled by slow currents and spike amplitude and

undershoot do not appear critical for model behavior. We

simply came upon a canonical combination for these two

currents that produced realistically sized spikes. Moreover,

previous analysis involving varying one parameter at a time

had identified maximal conductances �ggSynS, �ggSynG, �ggP, �ggK2, �ggh,
�ggCaS, and �ggLeak, and ELeak as critically contributing to bursting

behavior [3]. Thus in this analysis we did not vary �ggK1, �ggKA,
�ggCaS, or �ggNa but concentrated on varying the critical

parameters. As some selection was necessary due to compu-

tational and financial limitations on database size, this

selection seemed reasonable. In future we may be able to

add the fast currents to the database.

All model simulations were started from the same initial

conditions, which were different for each of the two neurons and

were obtained by running the canonical HCO model [29] for 200

s, such that one of the two neurons was in its bursting state and the

other one was being inhibited. The same parameter values were

used in each of the paired model neurons. The eight parameters

varied were: the maximal conductances of spike-mediated (�ggSynS),

graded transmission (�ggSynG), �ggLeak, �ggP, �ggCaS, �ggh, and �ggK2, across of

0%, 25%, 50%, 100%, 125%, 150%, and 175% of their canonical

values and ELeak across 270, 265, 260, 255, and 250 mV

values. After changing a parameter, we ran each model instance

for 100 s to allow the system to establish stable activity, and then

we ran it for another 100 s, from which we recorded the voltage

traces of the electrical activity corresponding to its paired neurons

and the corresponding spike times. The firing characteristics were

analyzed and recorded into a database named HCO-db.

Definitions
In voltage traces we recognized a spike only if the potential

waveform crossed a threshold of 220 mV. We defined a burst as

having at least three spikes and a minimum inter-burst interval of

1 second. We defined the cycle period as being the interval

between the middle spikes of two consecutive bursts. Phase was

calculated on a per cycle basis, as being the delay from the middle

spike of a burst of neuron B to the middle spike of the preceding

burst of neuron A divided by the interval from this middle spike of

the next burst of neuron A to the middle spike of the preceding

burst of neuron A. The duty cycle was defined as the percentage

of the period occupied by a burst.

We defined a half-center oscillator instance (HCO) as

having: two model interneurons each showing bursting activity

with at least two bursts in a 40 s time interval, with each burst

having normal spikes (coefficient of variation of the amplitudes of

Figure 11. Venn diagram of the distribution of instances projected in the 3D space defined by �ggLeak, �ggK2, and �ggP. (A) Bursters and
realistic bursters. The sets showing the number of points in the 3D space (shaded rectangles of Figure 10) that include only not realistic bursters (8),
only realistic bursters (42), and both types of instances (41) are colored in light blue, red, and purple, respectively. (B) HCOs and realistic HCO
instances. The sets showing the number of points in the same 3D space as Figure 8 (data not shown) that include only not realistic HCOs (114), and
both types of instances (243), not realistic and realistic, are colored in blue, and purple, respectively.
doi:10.1371/journal.pcbi.1003678.g011
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Figure 12. Histograms showing the distributions of instances projected onto the three axes of �ggLeak, �ggK2, and �ggP. The histogram
corresponding to one group of instances was shifted for visualization of the overlapping bins. The two-sample Kolmogorov-Smirnov test rejected the
null hypothesis (that the two distributions are from the same continuous distribution) at the 5% significance level for each axis (h = 1 in all cases). (A)
Distributions of the realistic and not realistic burster instances. (B) Distributions of the realistic and not realistic HCO instances.
doi:10.1371/journal.pcbi.1003678.g012
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the spikes within any burst is less than 0.07); a small variation of

period (coefficient of variation of period less than 0.05); relative

phase in the range of (0.45–0.55); and at least one synaptic

component present (either �ggSynS?0, or �ggSynG?0, or both �ggSynS?0

and �ggSynG?0). We considered a realistic HCO instance as being

a HCO that showed realistic bursting corresponding to that

observed in leech oscillator heart interneurons. Precisely, it was a

HCO with period between 5–15 s, average spike frequency

between 8–25 Hz, and duty cycle between 50–70%.

We defined an isolated neuron instance (isolated
neuron) as having two identical interneurons (though started

with different initial conditions, but otherwise identical), and

no synaptic interaction (i.e., �ggSynS = 0 and �ggSynG = 0). We

defined a burster instance as being an isolated neuron

instance for which both neurons had at least two bursts, each

with normal spikes, and regular periods (as defined above for

the HCOs). Note that burster instances can be thought of as

being HCOs with no synaptic connections. We defined a

realistic burster as being a burster that showed realistic

bursting corresponding to isolated leech oscillator heart

interneurons. Precisely, it was a burster with period between

5–15 s, and average spike frequency between 8–25 Hz. Note

that realistic bursters can be thought of as being realistic

HCOs with no synaptic connections. We define a family as

being a sub-set (of a group) of instances that have all the same

parameter values except one (e.g., all realistic bursters that

vary only by �ggP constitute a family). Note that one can

partition a group into families according to the number of

members in the family.

HCO database
In our previous work [31], we created a database of

10,485,760 HCO simulated model instances (HCO-db, [32])

by systematically varying eight key parameters (a brute-force

approach). The resulting parameter space includes 10,321,920

HCO instances which have at least one synaptic component

present, and 163,840 isolated neuron instances which contain

twin neurons without any synaptic interaction. By using our

definitions above as criteria, we identified those simulated

instances belonging to four groups [31]: functional HCOs

encompassing 1,202,139 HCO instances and their subset of

realistic HCOs having 99,066 instances, and of bursters

encompassing 424 instances, of and their subset of realistic

bursters encompassing 307 instances out of the entire database.

By querying the HCO-db, we efficiently explored the instances

from these four groups to determine which and how intrinsic

membrane and synaptic parameters affect their electrical

activity. In particular, we were interested in defining the

parameter values that can lead to functional output from this

circuit that conforms to that observed in the living system. For

this, we applied the following methods to our groups of HCO

model instances.

Principal component analysis (PCA)
Principal component analysis (PCA) is a powerful tool used

in many fields for identifying potentially hidden patterns

within a large multidimensional data set. PCA, proposed by

Pearson in 1901 [43], is a mathematical method based on an

orthogonal linear transformation that allows for dimensionality

reduction of a multidimensional data set without too much loss

of information. This transformation converts the original data

set into a set of linearly uncorrelated variables called principal

components. Each principal component is a linear combina-

tion of the original variables. The number of principal

components is less than or equal to the number of original

variables. PCA allows for reducing the dimensionality of a data

set by using only the first few principal components (considered

the most important). The first principal component has the

largest possible variance and each succeeding component in

turn has the next highest variance possible and it is orthogonal

to (i.e., uncorrelated with) the preceding components. Since all

the principal components are orthogonal to each other, there is

no redundant information.

We applied the principal component analysis (PCA) [43] to

our four groups of interest. For this, we used the princomp function

provided in the MATLAB Statistics Toolbox [44] to obtain the

principal components (PC) for each group. This function returns

the coordinates of the original data in the new coordinate system

defined by the principal components. We can visualize each

group of instances within the 3D space defined by the first three

principal components obtained for the respective group (plots not

shown, see S3: Figures 1–4). The princomp function also calculates

the coefficients of the linear combinations of the original

variables (our parameters) that generate the principal compo-

nents. Each coefficient represents the importance of the

respective parameter within the principal component (PCi =Xn

j~1
wij � pj , where n is the number of the original parameters

pj, and wi,j are the coefficients of these parameters for the

principal component PCi). For each group of interest, we plotted

the percent of variability explained by each principal component

(see Results).

3D Orthogonal Regression Line
We used 3D Orthogonal Distance Regression (ODR) to

assess the relationship between parameters identified in our

PCA. Here we focus on the linear regression ([45]) and more

precisely on the orthogonal linear regression method. The

orthogonal linear regression method uses the Principal Com-

ponents Analysis (PCA) method described above to fit a linear

regression that minimizes the perpendicular distances from the

data to the fitted model (least square fit is minimum). The

method is also called Total Least Squares method or Principal

Component Regression ([46]). Basically, given a set of points in

a 3D space, the ODR method uses the coefficients of the first

PCA corresponding to the 3D points to find a line (called 3D

ODR line) in this 3D space that is least distance from the

points. Once found, this line shows the tendency or direction of

the points within the 3D space with respect to the three axes of

the space.

Two-sample Kolmogorov-Smirnov test
To test for the equality of our group distributions, we applied a

two-sample Kolmogorov-Smirnov [47] nonparametric test

(Figures 12A and 12B). To perform a two-sample Kolmogorov-

Smirnov test on our distributions (see Results) we used the kstest2

function in Matlab ([44]). The function was applied with the

default Matlab values of ‘Alpha’ = 0.05 significance level and

‘Tail’ of ‘unequal’. We rejected the null hypothesis at the 5%

significance level. The null hypothesis stated that the two samples

are drawn from the same distribution.

Supporting Information

Figure S1 Plots of instances of a group in the 3D space
defined by the first three main principal components
obtained by applying PCA to the respective group.

(DOC)
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Figure S2 Pairwise parameter variations for the realis-
tic instances (HCOs and bursters).
(DOC)

Figure S3 5D clickable plots of HCOs and realistic
HCOs.
(DOC)

Figure S4 Principal components for HCO and bursters
groups.
(DOC)

Table S1 Coefficients of the linear combinations of the
parameters that generate the principal components for
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