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Abstract. The goal of this paper is to investigate the selection of the
kernel for a Web-based AIRS. Using the Kernel Rocchio learning method,
several kernels having polynomial and Gaussian forms are applied to
general images represented by color histograms in RGB and HSV color
spaces. Experimental results on these collections show that performance
varies significantly between different kernel types and that choosing an
appropriate kernel is important. Then, based on these results, we propose
a method for selecting the kernel type that uses the score distribution
models. Experimental results on our data show that the proposed method
is effective for our system.

1 Introduction

In a Web-based Image Retrieval System, the goal is to answer as well (fast and
accurate) as possible with images that meet the user’s request. Here, we assume
that the database and the query image(s) are represented by color histograms.
However, a characteristic of these colors is that they are not independent, but
correlated. Moreover, the interaction between colors is stronger for some queries
(images) than for other queries. In the former case, a more complex, possibly
non-linear, kernel has to be used, whereas in the latter case, a linear kernel may
be sufficient. Since we are dealing with real images, and therefore, with complex
queries, it is expected that we need to use non-linear kernels to achieve good
retrieval results. However, in the literature, “there are currently no techniques
available to learn the form of the kernel” [4]. Methods like Relevance Vector
Machines [11] assume distribution of data, which might fit or not a real collection.
In this study, we learn from real tests the characteristics of our data, and then,
we build our kernel selection method.

The paper organization is as follows. Section 2 provides the retrieval model,
and the kernel method. Based on the experimental results presented in section
3, section 4 explores a new methodology for selecting the kernel to be used by
the Kernel Rocchio learning method in order to improve the performance of an
adaptive image retrieval system (AIRS). Finally, section 5 concludes the paper.
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2 Background

2.1 Retrieval Model

In Image Retrieval, the user searches a large collection of images to find images
that are similar to a specified query. The search is based on the similarities of
the image attributes (or features) such as colors. A linear retrieval form [2,1]
matches image queries against the images from collection

F:RN xRN - R,F(P,Q) =P'Q.

The query image Q contains the features desired by user. The bigger the value
of the function F', when applied to a query Q and an image P, the better is the
match between the query image Q and the database image P. For representing
images by color, we use the histogram representations in RGB and HSV color
spaces.

2.2 Kernel Method

The kernel method constitutes a very powerful tool for the construction of a
learning algorithm by providing a way for obtaining non-linear decision bound-
aries from algorithms previously restricted to handling only linearly separable
datasets.

In this work, the general form of the polynomial kernels [4,1] is given by

K(x,y) = ((x,y))*,d >0, (1)
and the general form of the radial kernels is given by
C
(2 b =il

K(x,y) =exp | — 297 ,0 €RT. (2)

Recently, image retrieval systems started using different learning methods
for improving the retrieval results. In this work, we use the Kernel Rocchio
method [1] for learning.

3 Experimental Study of Kernel Type Selection

Since we are dealing with real images, and therefore, with complex queries, it
is expected that we need to use non-linear kernels to achieve good retrieval
results. Therefore, in this section, we experimentally study, through several test
query examples, the possible relationships between the different queries and the
different kernels.
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3.1 Experimental Setup

For our experiments, we use two test collections of size 5000, which include 10
and 100 relevant images, respectively, for each query image, and one of size 10000,
which includes 100 relevant images for each query image. For convenience, we
name these sets as 5000-10, 5000_100 and 10000_100. All image collections are
quantized to 256 colors in RGB and 166 colors in HSV. We use the same set of
10 images as queries (Q1,Q2, ..., Q10) for each experiment.

For evaluation purposes, we use the Test and Control method. The process
of obtaining the training and testing sets is described in detail in [6]. For each
test collection we create 3 different training sets, each of 300 images (called Set
1, Set 2, Set 3), and one test set. The images in the three training sets and the
testing set are randomly distributed. The number of relevant images within the
training and the testing sets for each query is given in Table 1. We assume that
at each feedback step there are 10 images seen by user. For each test collection
(500010, 5000_100 and 10000_100), we perform three similar experiments, each
one corresponding to a different training set (Set 1, Set 2, Set 3). That is, in
total, we performed 9 experiments.

Table 1. Number of the relevant images within the training sets and the testing set.

[500010[[Set 1]Set 2[Set 3[Test| [5000-100][Set 1]Set 2|Set 3[Test| [10000_100[[Set 1[Set 2[Set 3] Test|

Q1 0 0 2 4 Q1 9 8 4 |53 Q1 1 4 2 | 62
Q2 1 0 0 4 Q2 6 5 5 | 50 Q2 0 5 4 | 49
Qs 0 1 0 7 Qs 4 8 9 | 51 Qs 4 3 2 | 52
Qa 0 0 1 7 Qa 8 5 2 | 56 Qa 7 1 5 | 46
Qs 1 0 0 7 Qs 7 8 6 | 43 Qs 7 3 3 | 47
Qs 0 0 2 4 Qs 5 9 1 |56 Qs 7 5 3 | 46
Q7 0 1 0 5 Q7 4 7 9 | 56 Q7 3 1 4 | 44
Qs 1 1 0 4 Qs 4 5 7 | 48 Qs 4 4 5 | 46
Qo 0 0 0 2 Qo 5 5 3 | 48 Qo 1 3 1 | 49
Q10 1 1 0 4 Q10 6 8 9 | 50 Q10 2 2 2 | 48

To evaluate the quality of retrieval, we use the Ry, o, measure [3]. We perform
the experiments for a set of 12 kernels: 6 polynomials and 6 radial basis, with
general forms given respectively by Equations (1) and (2). The values of the
parameters (a, b, ¢, and d) and the names of the kernels used in the experiments
are presented in Table 2. In all experiments presented in this work, o = 1.

Space limitation precludes us from showing all the plots obtained from our
experiments. However, as an example, in Figure 1, we present the plots of the
kernel values obtained for query (7 for 5000-100 image test collection in RGB
color space, for the first training set, Set 1.

3.2 Discussion of the Results

In this section, we analyze the possible relationships between the different queries
and the different kernels that occur in our experiments.
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Table 2. Parameters used for the different kernels.

| d |Name| | a | b | c |name|
d = 1| Pol; a=1 |b=2|c=1|Rad;
d = 2| Pols a=1 |b=1|c=1|Rad>
d = 3| Pols a=0.5|b=2|c=1|Rads
d = 4| Poly a=0.5|b=1|lc=1|Rads
d = 5| Pols a=0.25|b =2|c = 1|Rads
d = 6| Polg a=0.25|b =1|c = 1|Rads
a) polynomials b) radials

Selecting the kernel for a given query. In our previous work [6], we
found that there is no general best kernel, but there may be a best kernel for
each query or groups of queries. Continuing this work, from Figure 1 we notice
the different behaviors of the different kernels for query (). Moreover, each query
within each of the 9 experiments presents similar behavior. To be able to study
the results of our experiments, we need to define our criterion for selecting the
best kernel corresponding to a particular query.

Q, ——- polynomials Q, ——- radials
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Fig. 1. Kernel results for query @; for 5000.100 in RGB.

For this, for each query within each training set of each test collection, we
compute the average R, (over all feedback steps) value corresponding to each
kernel, and then, we compare these 12 values. The kernel with the highest average
R, orm value is chosen as the best initial kernel for the respective query. If for any
query there is a kernel more efficient than the initial kernel, whose average R, orm
value is very close to the initial best kernel (the difference between the two values
is less than 0.05), then this kernel is chosen as the best final kernel for that query.
The order of our kernels, from the more efficient to the less efficient, is Pol, ...,
Polg, for polynomials and Rads,Rad;,Rads,Radg,Rads,Rads for radials. Then,
low order polynomials (Poly,Pols) are always preferred over any radials.
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Table 3 presents this process of choosing the best kernel for all 10 queries
for 5000-100 collection for the first training set (Set 1) in RGB color space. By
using this procedure, we select the best (final) kernels for all runs for all 3 test
collections in both color spaces, which we use in our study from now on.

Table 3. Selecting the best (final) kernel for 5000-100 test collection, for Set 1 in RGB.

| RGB [ Q1 [ Q2] Q3] Qs Qs Qe|Qr]| Qs ] Qo] Quo |
Initial |Rads| Pols |Rads|Rads|Rads|Rads|Rads| Pols |Rads| Rads
Difference|0.009(0.005/0.007|0.014|0.007{0.025|0.033|0.007(0.006/0.0184
Final Rads POl1 P0l1 POl1 Rads POl1 Rada P0l1 P0l1 P0l1

Query groupings based on kernel type. To summarize the results from
our experiments, in here, we start by grouping the queries according to their per-
formance with respect to the different best kernels, for each experiment. These
groupings are shown in Tables 4 and 5, for 5000.100 and 10000-100 test collec-
tions, respectively.

Table 4. Query groupings for 5000_100 test collection.

|Set 1| Rad-> | Rads | Pol, |P012|Pol3|
RGB Q1,Qs5,Q7|Q2, @3, Q4,Qs, Qs, Q9, Q10
HSV|Q3, Q10 Q2,Q04,Q5,Q7,Qs,Q9 | Qs | Q1
|Set 2[Rad:|[Rads| Rads| Rads| Pol, [Pol,]
RGB Q5 Q17Q27Q31Q47Q67Q77Q81Q9 QIO
HSV| Q1 | Qo Q4 | Q2,Q3,Q5,Qs6,Q7,Qs,Q10
|Set 3| Pol1 |P0l2|Pole|

RGB Q2,Q3,Q4,Q5, s, Q7,Qs, Q9 Q10| Q1
HSV|Q1,Q2,Q3,Q4,Q5,Qs, Q7, Qs, Qo, Q10

Kernels’ behavior in different color spaces. It is known that HSV color
space is more attractive, due to its approximately perceptually uniform charac-
teristic, than the RGB color space. In [4] the authors found that, in practice,
“the impact of the choice of the color space on performance” is minimal when
“compared to the impacts of the other experimental conditions” such as the
choice of the kernel type. An explanation is that the classifier does not use any
information about the color space after quantization [4]. By using the results
presented in the previous tables, we group the queries according to which color
space has a more efficient best kernel type in Table 6. As we can see from the
table, there are some queries that perform equally well (using the same efficient
kernel) in both color spaces (column marked “Same”). Then, there are cases
where it seems that it is better to work in RGB color space than in HSV color
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Table 5. Query groupings for 10000_100 test collection.

|Set 1|Rad2| Rads |Rad5| Poly |P013|P0l5|

RGB Q17Q57Q7 Q37Q41Q61Q81Q97Q10 Q2
HSV QZ Ql Q37Q47Q57Q67Q85Q95Q10 Q7

|Set 2| Rads |Rad5| Poly | Pol» | Pols |

RGB Q17Q7 Q21Q57Q87Q9 Q37Q41Q6 QIO
HSV Q1 |Q2,Qs3,Qs5,Qs,Qo, Q10 Q4,Qs, Q7

|Set 3|Rad3 | Rad5| Poly |Pol2 |P0l3|

RGB| @5 | Q7 |Q1,Q2,Q4,Q6,Qs,Q9, Q10| Q3
HSV| Q- Q2,Q3,Q4,Qs,Qs,Q9, Q10| Q1 | Qs

space (e.g., for the Set 2, for the 10000_100 collection, there are 5 queries in RGB
and 3 in HSV), and vice-versa. This result is consistent with the results of [4].

Table 6. Query grouping according to the space representation for Set 2.

| Set 2 | RGB | Same | HSV |
5000-10 | Q1,Q2,Q7, Qo Qs Q3,Q4,Qs,Q6, Q10
5000100 Q1,Q04,Q0 |Q2,Q3,Q6,Q7,Qs Qs, Q1o
10000_100|Q1, Q4, Qs, @s, Qo Q2,Qs Q3,Q7, Q10

Kernels’ behavior across different collections. In this part, we want
to answer the question of whether a query keeps the same best kernel across
different test collections or not. From Tables 4 and 5, one can notice that there
are queries that keep the same best kernel across both test collections, but only
for some training set(s), and not for all 3 training sets of each collection. For
example, in RGB, query () for Set 1 gets Rads as the best kernel across both
test collections, and for Set 2, it gets Pol; and Rads as the best kernels for
5000_100 and 10000-100 test collections, respectively. As a conclusion, in our
experiments, no particular query has a best kernel across different collections.

Kernels’ behavior for different training sets. For this study, we perform
3 runs, each corresponding to a different training set (Set 1, Set 2, Set 3), on each
test collection. From Tables 4 and 5, one can notice that there are some queries
that have the same kernel for all 3 training sets. The other queries, in either color
space, have different kernels between the 3 training sets, without a general pat-
tern. In conclusion, since different runs (training sets) include different number
of relevant images and cases differ in terms of if they offer enough information or
not, the choice of the best kernel between the different training sets depends on
how much information (from relevant and non-relevant images) is good enough
for the respective query. If this information is equally good between the runs
then they show the same best kernel, and conversely.
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Influence of the number of relevant images. In here, we analyze the
effect of having different number of relevant images in our test collections, or
generality [5]. As a statistics: for the 500010 test collection, with a generality of
0.002, radial kernels represent 50% in RGB color space, and 40% in HSV; for the
5000_100 test collection, with a generality of 0.02, radial kernels represent 13%
in RGB color space, and 17% in HSV; for the 10000_100 test collection, with
a generality of 0.01, radial kernels represent 23% in RGB color space, and 13%
in HSV. That is, in RGB color space, the smaller the generality fraction, the
bigger is the number of queries that present a radial kernel as their best kernel.
However, it seems that in HSV color space this rule does not necessarily apply.

From our plots, one can notice that, generally, all polynomial kernels and
Rads, Rads, Rad; kernels display the same increasing curves (and behavior)
whenever a relevant image is learned. On the other side, the other three radial
kernels display, in general, similar behavior, approximately constant. However,
there are cases when Rads kernel’s curve drops when a relevant image is learned,
and cases when Rady, Radg curves increase when a relevant image is learned. As
a statistics, Poly is the best kernel for the most number of queries (55%), Rads
is chosen by 13% of queries, Pols is chosen by 7% of queries, Pols is chosen by
8% of queries, Rads is chosen by 6% of queries, whereas the other kernels are
chosen by less than 5% of the queries. From these observations, we can prune
down the number of kernels to study from 12 to 5 (Poly,Pols,Pols,Rads,Rads),
which answer to approximately 90% of our queries.

4 Using Score Distributions for Kernel Type Selection

Researchers [8,9, 7] modeled the score distributions of search engines for relevant
and non-relevant documents by using a normal and an exponential distribution,
respectively. In this section, we propose a procedure based on this model to select
the kernel type for an AIRS.

4.1 Mathematical Model of Image Score Distributions

The score distributions of the relevant documents suggested by researchers [9]
are modeled as

. (score—pu)? )7

P(score|R=r) = \/21”—0 exp( o

where p is the mean, and o is the variance of the Gaussian distribution. The
score distributions of the non-relevant documents are modeled as

P(score|R = nr) = Aexp(—A x score),

where X is the mean for the exponential distribution.

Our experimental results (Section 3.1) support these mathematical models
of the score distributions, with some approximation. This analysis was done for
5000-100 and 10000-100 test collections only, since the 5000_10 test collection
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does not contain sufficient number of relevant images and, therefore, the score
distribution models do not fit for this collection. Figure 2 illustrates how the
score distributions fit the top 300 images for one query for 3 kernels.

As an observation, the score distributions are different for the different kernel
types used in the experiments. This motivates us to seek for a method to select
the kernel type by using these differences between the score distributions. Next,
we present such a method.
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Fig. 2. Score distributions for query @; for 5000.100 and Set 1 in RGB, for
Polg, Radi, Rads kernels.

4.2 Kernel Selection Method Based on Image Score Distributions

In image retrieval, the goal is to retrieve as many relevant images and as few
non-relevant images as possible. This means, we wish to have a retrieval system
capable to rank all the relevant images before the non-relevant ones. In other
words, the scores of the relevant images should be as high as possible, whereas
the scores of the non-relevant images should be as low as possible.

In our system, these scores are computed by using the different kernels type.
Then, logically, the best kernel is the one that is able to distribute the scores
of the images such that the relevant images have higher scores than the non-
relevant ones. Therefore, we suggest the following procedure for selecting the
kernel type:
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1. for each kernel type K;, compute

(a) the score distribution of the relevant images (ScR;) by using a Gaussian,
and

(b) the score distribution of the non-relevant images (ScN R;) by using an
exponential.

2. compare the results of any two kernel types K; and Kj; reject those kernels
K; for which there is a kernel K; with Eiil ScR;s > Eiozl ScRj; and
Ziozl ScNR;; < Ziil ScNRj,, where ScR;; = NormalizedF'req;s x score;s
and s is the score interval.

As an observation, the above procedure can be applied after each feedback
step to select the best kernel type to be used for the following feedback step.
Another observation is that the model is biased, especially for low scoring im-
ages, which do not occur between the top 300 images. However, for high scoring
images, the model offers a relatively good estimation [8].

Discussion. Our method of selecting the best kernel tries to fit the score
distributions of both relevant and non-relevant images, such that there are as
many as possible relevant images with high scores grouped towards the right half
of the plot, and less relevant images grouped in the left half side, and vice-versa
for the non-relevant images.

For example, in Figure 2, Rads and Polg have better distributions for the
non-relevant images than Rad; (more non-relevant images get scores of 0 or
below). For relevant images, Rad;, followed by Polg, shows the least number of
relevant images with scores of 0. But, Rads, followed by Polg, shows a bigger
number of relevant images with bigger scores. As a result, by cumulating these
observations, the order for the best kernel is Rads, Polg, and Rad;.

If we compare this result with the results from the previous section 3, we
can see that these kernels display very close results (Figure 1). However, this
result is consistent with our result from the experiments (Table 3). We obtained
similar results for most of the queries in all the experiments.

As a conclusion, our method for selecting the kernel type for a particular
query is based on score distributions, which are obtained via feedback from user
and can be calculated automatically by the system. The method gives the same
results as those obtained in Section 3, from extensive experiments, for most of
the cases. That is, this method could be a viable solution to automatically select
the kernel type in an AIRS.

5 Conclusions and Future Work

Kernel methods offer an elegant solution to increase the computational power
of the linear learning algorithms by facilitating learning indirectly in high -
dimensional feature spaces. Therefore, kernels are important components that
can improve the retrieval system.

This motivates us to investigate several types of kernels in order to improve
the performance as well as the response time of our AIRS, which is intended
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to be a web-based image retrieval application. For this, several kernels having
polynomial and Gaussian Radial Basis Function (RBF) like forms (6 polynomials
and 6 RBFs) are applied to generic images represented by color histograms in
RGB and HSV color spaces.

We implement and test these kernels on image collections of sizes 5000 and
10000. Experimental results on these collections show that an appropriate kernel
could significantly improve the system performance. By observing the behavior
of the different kernels for several queries, we answer to several questions about
the possible characteristics that might influence the kernels’ behavior. Then,
based on these observations, we propose a kernel selection method that uses
score distribution models to select the best kernel for a particular query. The
method shows approximately the same results in selecting the best kernel type
for most of the queries and parameter settings used in our experiments.

As future work, we plan to investigate whether our kernel selection method
works or not when multiple feature types (e.g., color and texture) are used to
represent images.
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